Chapter 16

8. Carnival. [5 points]

a)

Net winnings	$\$ 95$	$\$ 90$	$\$ 85$	$\$ 80$	$-\$ 20$
Number of darts	1	2	3	4	5
P (amount won)	0.1	$0.9(.1)$	$(0.81)(.1)$	$(0.729)(.1)$	0.6561

b) E (number of darts) $=1(0.1)+2(0.09)+3(0.081)+4(0.0729)+4(0.6561) \approx$ 3. 44 darts
c) E (winnings) $=\$ 95(0.1)+\$ 90(0.09)+\$ 85(0.081)+\$ 80(0.0729)-$
$\$ 20(0.6561)$ ~
\$17. 20

22. Day trading again. [5 points]

a) $E($ stock option $) \cdot 1000(0.20) \cdot 0(0.30) \cdot 200(0.50) \cdot \$ 300$

The trader should buy the stock option. Its expected value is $\$ 300$, and he only has to pay $\$ 200$ for it.
b) $E($ gain $) \cdot 800(0.20) \cdot(\cdot 200)(0.30) \cdot 0(0.50) \cdot \$ 100$

The trader expects to gain $\$ 100$. Notice that this is the same result as subtracting the $\$ 200$ price of the stock option from the $\$ 300$ expected value.
c) $\operatorname{Var}($ gain $)=(800 \cdot 100)_{2}(0.20)=(-200-100)_{2}(0.30)=130,000$
$S D($ gain $)=\$ 360.56$
Notice that the standard deviation of the trader' s gain is the same as the standard deviation in value of the stock option

30. Random variables. [5 points]

a)
$E(2 Y \cdot 20)=2(E(Y))-20=44$
$S D(2 Y+20)=2(S D(Y))=2(3)=6$
b) $E(3 X)=3(E(X))=3(80)=240$
$S D(3 X)=3(S D(X))=3(12)=36$
c) $E(0.25 X+Y)=0.25(E(X))+E(Y)=0.25(80)+12=32$
$S D(0.25 X+Y)=\operatorname{sqrt}\left(0.25{ }_{2} \operatorname{Var}(X)+\operatorname{Var}(Y)=0.252(122)+32 \cdot\right)=4.24$
d) $E(X-5 Y)=E(X)-5(E(Y))=80-5(12)=20$
$S D(X \cdot 5 Y)=\operatorname{sqrt}[\operatorname{Var}(X)+52 \operatorname{Var}(Y)]=19.21$
e) $E\left(X_{1}+X_{2}+X_{3}\right)=E(X)+E(X)+E(X)=80+80+80=240$
$S D\left(X_{1}+X_{2}+X_{3}\right)=s q r t\left[\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\operatorname{Var}\left(X_{3}\right)\right]=20.78$

44. Bikes. [5 points]

a) E (unpack + assembly + tuning $)=E($ unpack $)+E($ assembly $)+E($ tuning $)$
$=3.5+21.8+12.3=37.6$ minutes
$S D($ unpack + assembly + tuning $)=$ sqrt [$\operatorname{Var}($ unpack $)+\operatorname{Var}($ assembly) $+\operatorname{Var}($ tuning $)]$
$=3.7$ minutes
b) The bike is not likely to be
ready on time. According to
the Normal model, the
probability that an assembly
is completed in under 30
minutes is about 0.019.

47. Coffee and doughnuts. [5 points]

a) $E($ cups sold in 6 days $)=6(E($ cups sold in 1 day $))=6(320)=1920$ cups $S D$ (cups sold in 6 days) $=$ sqrt [$6(\operatorname{Var}($ cups sold in 1 day)]= 48.99 cups The distribution of total coffee sales for 6 days has distribution $N(1920,48.99)$.

According to the Normal model, the probability that he will sell more than 2000 cups of coffee in a week is approximately 0.051.

b) Let $C=$ the number of cups of coffee sold. Let $D=$ the number of doughnuts sold.
$E(50 C+40 D)=0.50(E(C))+0.40(E(D))=0.50(320)+0.40(150)=\$ 220$
$S D(0.50 C+0.40 D)=\operatorname{sqrt}\left[0.50_{2}(\operatorname{Var}(C))+0.40_{2}(\operatorname{Var}(D))\right]=\$ 11.09$
The day' s profit can be modeled by $N(220,11.09)$. A day' s profit of $\$ 300$ is over 7 standard deviations above the mean. This is extremely unlikely. It would not be reasonable for the shop owner to expect the day' s profit to exceed $\$ 300$.
c) Consider the difference $D-0.5 C$. When this difference is greater than zero, the number of doughnuts sold is greater than half the number of cups of coffee sold.
$E(D-0.5 C)=(E(D))-0.5(E(C))=150-0.5(320)=-\$ 10$
$\operatorname{SD}(D-0.5 C)=\mathrm{sqrt}[(\operatorname{Var}(D))-0.5(\operatorname{Var}(C))]=\$ 15.62$

The difference $D \cdot 0.5 C$ can be modeled by $N(-10,15.62)$.

According to the Normal
model, the probability that
the shop owner will sell a
doughnut to more than half
of the coffee customers is
approximately 0.26 .

$$
z=0.640
$$

